

Ordinal Numbers - used for ranking

In figures	In words	Pronounce It
1st	the first	$\underline{\text { 1st }}$
2 nd	the second	2nd
3 rd	the third	3 rd
4th	the fourth	4th
5th	the fifth	5th
6th	the sixth	6th
7th	the seventh	7th
8th	the eighth	8th
9th	the ninth	9th
10th	the tenth	10th
11th	the eleventh	11th
12th	the twelfth	12th
13th	the thirteenth	13th
14th	the fourteenth	14th
15th	the fifteenth	15th
16th	the sixteenth	16th
17th	the seventeenth	17th
18th	the eighteenth	18th
19th	the nineteenth	19th
20th	the twentieth	20th
21st	the twenty-first	...
22 nd	the twenty-second	...
23rd	the twenty-third	...
24th	the twenty-fourth	...
25th	the twenty-fifth	...
26th	the twenty-sixth	...
27th	the twenty-seventh	...
28th	the twenty-eighth	...
29th	the twenty-ninth	...
30th	the thirtieth	30th
40th	the fortieth	40th
50th	the fiftieth	50th
60th	the sixtieth	60th
70th	the seventieth	70th
80th	the eightieth	80th

Ordinal numbers are often used in fractions:

Fractions

Symbol	Word
$1 / 8$	One eighth
$1 / 5$	One fifth
$1 / 4$	One quarter
$3 / 4$	Three quarters
$1 / 3$	One third
$2 / 3$	Two thirds
$1 / 2$	One half

Sums

Symbols Word (common term in brackets)

+
-
X
\div
$=$
$\%$

$(((1+6)-2) x$
2) $\div 2.5=4$
$10 \% 100=10$

Plus (And)
Minus (Take away)
Multiplied by (Times)
Divided by
Equals (Is)
Point
Percent

One plus six minus two multiplied by two divided by two point five equals four
or
One and six take away two times two divided by two point five is four
Ten percent of one hundred equals ten.

What to say
We often say "a" instead of "one".
For example when we have the numbers 100 or $1 / 2$ we say "A hundred" or "A half".
For example:
$1 \frac{1}{2}$ - "One and a half."
When pronouncing decimals we use the word point to represent the dot. The numbers following the dot are pronounced separately.

For example:
When you have the number 1.36 we say "One point three six."

Interesting Numbers

$\sim 0 \sim$
What could possibly be interesting about nothing?
You can put as many noughts in front of a number without changing the value of that number:- 01, 002, 0003, 00004 ...
Also there are a number of ways you can say 0 in English.

When we use it	For example:-	
$\mathbf{0}=\mathbf{o h}$	after a decimal point	$9.02=$ "Nine point oh two."

~ 12 ~
The number 12 is often represented as a dozen and the number 6 as a half dozen.
For example:
12 eggs= "A dozen eggs."
6 eggs = "Half a dozen eggs."

$$
\sim 13 \sim
$$

A dozen is 12 , but a baker's dozen is 13 , because in the past bakers who were caught shortchanging customers could be liable to severe punishment, so they used to add an extra bread roll to make up the weight.

$$
\sim 100 ~
$$

A century is 100 . The roman numeral for 100 is C , for centum.
One hundred is the basis of percentages (literally "per hundred"). 100\% is the full amount of something.
~ 1 billion ~
When is a billion not a billion?
In British English billion traditionally means a million million $=1,000,000,000,000=$ 10^{12}
In American English billion means a thousand million $=1,000,000,000=10^{9}$
The American billion has become standard in technical and financial use.
However, to avoid confusion it is better to use the terms "thousand million" for 10^{9} and "million million" for 10^{12}.
Milliard " is French for the number 10^{9}. It is not used in American English but is sometimes, but rarely, used in British English.

Letters as Numbers

$\sim \mathbf{k} \sim$
The letter k is often used to denote a thousand. So, $1 \mathrm{k}=1,000$.
If you see a job advertised and it offers a salary of $£ 12 \mathrm{k}$ it means $£ 12,000.00$.
$\sim \mathbf{m} \sim$
The letter m is often used to denote a million. So, $1 \mathrm{~m}=1,000,000$.
If you see a job advertised and it offers a salary of $£ 12 \mathrm{~m}$, apply for it!
\sim bn ~
The letters bn denote a billion. So, 1 bn is usually $1,000,000,000$ (see above).
If you see a job advertised and it offers a salary of $£ 12 \mathrm{bn}$, it's probably a missprint.

